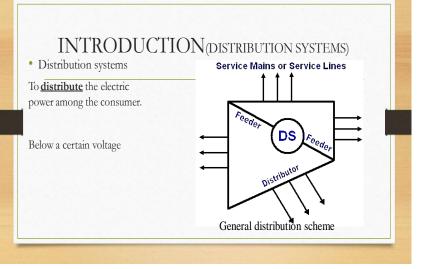

TEACHING PLAN TABLE

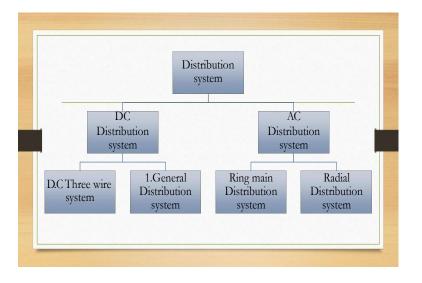

Academic Year 2017-2018

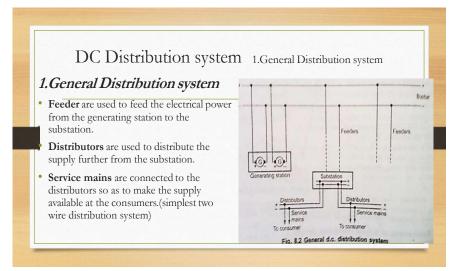
·	Academic Year 2017-2018					-	
S NO	LECTURE NAME	ΤΟΡΙϹ ΝΑΜΕ	PLANNED DATE	ACTUAL DATE	REFERENCE USED	CONTENT DELIVERY METHODS/CIT TOOLS USED	COURSE OUTCOMES
1	Dr JVB Subrahmanyam	recent trends in electrical engineering	19-07-2017	20-07-2017	INTERNET	LCD PROJECT	STUDENT CAN ABLE TO LEARN THE RECENT TECHNOLOGY
2	Dr Tulasiyammal c	layout of substations	23-08-2017	24-08-2017	TEXT BOOKS	LCD PROJECT	STUDENT CAN ABLE TO STRUCTURE OF SUBSTATION
3	Mr C Sreenivasulu	design practice of the secondary disturbuted system	012-09-2017	13-09-2017	TEXT BOOKS	LCD PROJECT	CAN ABLE TO KNOW THE KNOWLEDGE ON DISTURBUTED SYSTEM
4	Mr T.Madhu Babu	environmental impact of solar power	25-10-2017	26-10-2017	TEXT BOOKS	LCD PROJECT	STUDENT CAN ABLE TO KNOW THE SOLAR POWER
5	Mrs M.Harika Reddy	flip flop	3/11/2017	7/11/2017	TEXT BOOKS	LCD PROJECT	STUDENT CAN ABLE TO DESIGN OF FLIP FLOPS
6	Mr A. Naga Sridhar	Reactive power compensation	6/12/2017	6/12/2017	TEXT BOOKS	LCD PROJECT	STUDENT CAN ABLE TO EFFECT OF REACTIVE POWER
7	Mr B Ramesh	hydroelectric power plant models	18-01-2018	19-01-2018	TEXT BOOKS	LCD PROJECT	STUDENT CAN ABLE TO KNOW THE POWER PLANTS
8	Mr Shabbier Ahmed Sydu	generation of harmonics AC and DC filters	30-01-2018	30-01-2018	NPTEL	LCD PROJECT	STUDENT CAN ABLE TO KNOW THE KNOWLEDGE ON HARMONICS
9	Mr V Kranthi Kumar	natural hazards	6/2/2018	6/2/2018	TEXT BOOKS	LCD PROJECT	STUDENT CAN ABLE TO KNOW THE NATURAL HAZARDS
10	Mr G Dhasharatha	principle of operation of static relays	21-02-2018	21-02-2018	TEXT BOOKS	LCD PROJECT	STUDENT CAN ABLE TO KNOW THE OPERATION OF RELAYS
11	Mr B Nageswar Rao	control drives for machines	15-03-2018	15-02-2018	TEXT BOOKS	LCD PROJECT	STUDENT CAN ABLE TO DESIGN OF CONTROL DRIVES
12	Mr J Lingappa	algorithamof gauss siedal method	3/4/2018	4/4/2018	TEXT BOOKS	LCD PROJECT	STUDENT CAN ABLE TO KNOW POWER FLOW STUDIES
13	Mr N Ramesh Babu	working principle of synchronous machines	13-04-2018	13-04-2018	TEXT BOOKS	LCD PROJECT	STUDENT CAN ABLE TO LEARN THE PRINCIPLE OF SYNCHRONOUS MACHINES

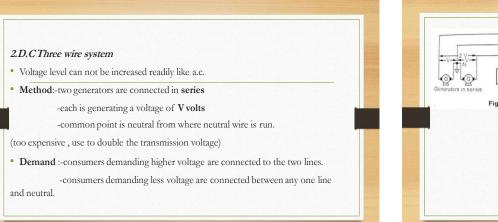
Requirements of good distribution systems

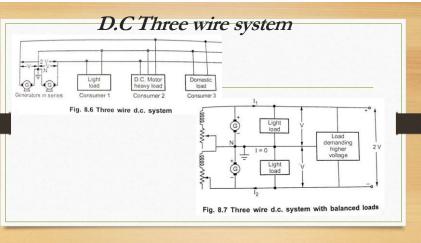
- Continuity in the power supply must be ensured.
- Voltage must not vary more than the prescribed limits. (75%).
- Efficiency of line must be high as possible.
- Safe from consumer point of view.
- Layout should not effect the appearance of locality.
- Line should not be overloaded.

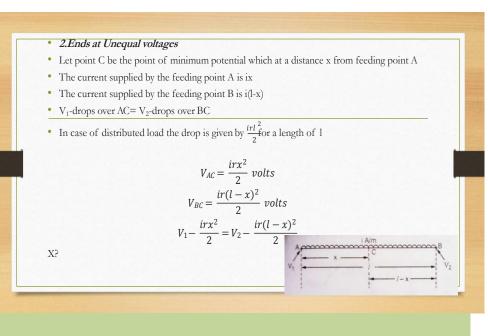
Distribution system is further classified on the basis of


voltage


1.primary distribution systems


2.secondary distribution systems


Primary Distribution:-The part of the electrical-supply system existing between the distribution substations and the distribution transformers is called the primary system.


Secondary Distribution:-The secondary distribution system receives power from the secondary side of distribution transformers at low voltage and supplies power to various connected loads via service lines.

