

Time : 3 Hours Ma	x. Marks : 75
1. Deducean equation for acceleration of a body in terms of cylindrical co-ordinate s with neat sketch.	system. Explain it [15]
2. A damped oscillator is subjected to a damping force proportional to its velocity. S differential equation of the oscillation. Discuss the under-damped, over-damped, a motions of the oscillator.	et up nd critical damped [15]
3. a) Derive an expression for frequency of vibration of a stretched string and discuss Its harmonics and overtones, with neat labeled diagram.b) Prove that velocity of sound in hydrogen is four times the velocity of sound in or	s xygen.
	[10+5]
4. a) Mention any six differences between travelling waves and standing waves.b) Show that for a simple harmonic oscillator, mechanical energy remains constan Proportional to the square of the amplitude.	t, and it is [6+9]
5. a) Determine the wavelength of a monochromatic light and the resolution of spect Michelson's interferometer.	ral lines using
b) In a Newton's rings experiment the diameter of the 4 th and 12 th dark rings are 0.40 respectively. Determine the diameter of 20 th dark ring.	00 cm and 0.700 cm, [12+3]
6. a) Discuss the Fraunhofer diffraction at a single slit. Obtain the condition for print minimum.	cipal maximum and
b) In Newton's ring experiment, why:	
(i) Central fringe is dark in reflected light?	
(iii) The rings get closer away from centre?	[9+6]
7. a) Obtain an expression for acceptance angle and numerical aperture for an opticab) Give the various advantages of optical fibers over conventional cables.	l fiber. [10+5]
8. a) Explain the modes of vibrations of CO_2 molecule. Describe the construction and	d working of

CO₂ laser with necessary diagrams. Mention its applications.

b) Calculate the energy and momentum of a photon of a laser beam of Wavelength 6328 A^0 . [10+5]

--00000-