TEEGALA KRISHNA REDDY ENGINEERING COLLEGE (UGC - AUTONOMOUS)
 B TECH I Semester Examinations, July 2021
 (CIVIL ENGINEERING) ENGINEERING PHYSICS

Answer any Five questions
All questions carry equal marks
Time : 3 Hours
Max. Marks : 75

1. Deducean equation for acceleration of a body in terms of cylindrical co-ordinate system. Explain it with neat sketch.
2. A damped oscillator is subjected to a damping force proportional to its velocity. Set up differential equation of the oscillation. Discuss the under-damped, over-damped, and critical damped motions of the oscillator.
3. a) Derive an expression for frequency of vibration of a stretched string and discuss Its harmonics and overtones, with neat labeled diagram.
b) Prove that velocity of sound in hydrogen is four times the velocity of sound in oxygen.
4. a) Mention any six differences between travelling waves and standing waves.
b) Show that for a simple harmonic oscillator, mechanical energy remains constant, and it is Proportional to the square of the amplitude.
5. a) Determine the wavelength of a monochromatic light and the resolution of spectral lines using Michelson's interferometer.
b) In a Newton's rings experiment the diameter of the $4^{\text {th }}$ and $12^{\text {th }}$ dark rings are 0.400 cm and 0.700 cm , respectively. Determine the diameter of $20^{\text {th }}$ dark ring.
6. a) Discuss the Fraunhofer diffraction at a single slit. Obtain the condition for principal maximum and minimum.
b) In Newton's ring experiment, why:
(i) Central fringe is dark in reflected light?
(ii) Fringes are circular
(iii) The rings get closer away from centre?
7. a) Obtain an expression for acceptance angle and numerical aperture for an optical fiber.
b) Give the various advantages of optical fibers over conventional cables.
8. a) Explain the modes of vibrations of CO_{2} molecule. Describe the construction and working of CO_{2} laser with necessary diagrams. Mention its applications.
b) Calculate the energy and momentum of a photon of a laser beam of Wavelength $6328 \mathrm{~A}^{0}$.
