TEEGALA KRISHNA REDDY ENGINEERING COLLEGE (UGC – AUTONOMOUS) B TECH II Semester Examinations, September 2021 (Common to EEE, CSE & IT) APPLIED PHYSICS

Answer any Five questions All questions carry equal marks

Time : 3 Hours

Max. Marks: 75

R20

1.	a) What is a black body? What are the salient features of black body radiation? Give	
	Plank's hypothesis.	(7M)
	b) What is Compton effect? Derive an expression for Compton shift in the wavel	· · ·
	of a photon after scattering from an electron.	(8M)
	or a photon arter seattering nom an erection.	(0111)
2.	a) What is a Zener diode? Explain the operation of a Zener diode in the forward and	
	Reverse bias condition.	(7M)
	b) State Hall effect. Derive an expression for Hall coefficient of a material.	(8M)
	b) State than effect. Derive an expression for than eventeight of a material.	(0111)
3	a) Explain the construction and working of semiconductor diode laser.	(7M)
	b) Write brief notes on i) p-i-n Photodiode and ii) Avalanche Photodiode.	(8M)
	b) while offer notes on i) p i in i notodrode and in i i valanche i notodrode.	(011)
4	a)With the help of a suitable energy level diagram, explain the principle, construction	
••	and working of a He-Ne laser.	(8M)
	b) What is the principle of optical fiber? Describe various types of optical fibers.	· · ·
	b) what is the principle of optical moor. Describe various types of optical moors.	(/111)
5.	a) Derive Maxwell equations in differential and integral forms.	(8M)
υ.		(0111)
	b) Derive Clausius-Mosotti equation.	(7M)
		(,)
6.	a) Describe Davisson and Germer's experiment and explain how it enabled the	
0.	verification of wave nature of matter.	(8M)
		· /
	b) Illustrate the construction and operation principle of Bipolar Junction Transisto	
	(BJT).	(7M)
7.	a) Explain with a neat sketch the basic principle, working and the applications of	
	LED.	(7M)
	b) Describe the principle, construction and working of a Ruby laser.	(8M)
0		
8.		-
	Angle of an optical fiber.	(7M)

b) Explain in detail the classification of diamagnetic, paramagnetic and ferromagnetic materials on the basis of permanent magnetic moment. (8M)